8.4 Part 2

Las't time Gauns Divergene Theorm
SSS $\operatorname{dis}(F) d N=\int S F \cdot d S^{2}$
where:- W is a soQsd in \mathbb{R}^{3}

- Dw is quiented cutruande
- F is a vedtar fiedl

This Games sivengunen theorem

- is a calculekiand tagl (cheren which sighe is easier)
- it explains fle meaning ef the divergencerpp ration.
For a vectar sield $F=\langle P, Q, R\rangle$ we have defined givengeree by a formulas div $F=\nabla \cdot F=P_{x}+Q_{0}+R_{2}$
However, if our vecter fielel I
fias à physical meaning 1 we hops that div(F) dees top!
Eg. Fis the velacity reoper fielQal fora flaw of semegreartity 6

Oi If re de not understand the meaning of divergence from the formuler - we can try to understard it using the Gauss Divergeme. Thearem.
(Cunclasion (last time) The value of the sunction div (F) at a point p is
the rofle of $\left\{\begin{array}{l}\text { changesen (accumulabian) }\end{array}\right.$ of the graint $+\bar{Q}$
at the paint P.
Kinal projesproblen Eppain this
concles ion. (Guidance i series of geostini)
(Seurces indes

- back
- reurew: last weale

Heat sen
ip header
created

Air soow
pressure
op forces air to becous
Reuser at σ accummerso

The last topic is:
D. Moving the surface of intesredion
 S and T with Tlyives insides. Cheoce the solid is to te the space in betray S and.

Tl. heb F is a vector field defined on W \& such that $\operatorname{ariv}(F)=0_{0}$

Then $\quad \int_{S} F-d \vec{S}=S S F \cdot d \vec{S}$,
if both $S \& T$ are on ieved in the sere way, say outwards.

So,

$$
\left\{\begin{array}{l}
\text { We wsiluse } \\
\text { GDT for w. }
\end{array}\right.
$$

$$
\text { SSS } l_{=\rightarrow}^{\operatorname{aiv}(F)} d V=\operatorname{S\rho }_{2 w} F \cdot d \vec{?}
$$

We need to understad the berendary DWr of W, It censists of two piecas Sannelt. However, when we take into accurl onientations we get^{t}
$\underline{D W}=S$ with plus and T with minus:
(1) bounderry of h] has arienshion frou W and it points out of N
Ethis is the eniertion in GDT]
(2) We will
compare with os ientekious ef
SAT which were cheeen as "ous of S^{4} and "out of $T^{\prime \prime} e$
(3) Or S: orieutabion out of of 'orierbition out of S_{1}

Becoures at a point p on S,

$$
\begin{aligned}
& \text { out of } W= \text { out of spoce endesed } \\
& \text { by } s_{\text {. }}
\end{aligned}
$$

Quer T
arieubotion cut of $W=3$
the abeer te as the ninioutation out of T, ie. encereap by?
(5) So the

Precise formule for DWl is
DWO $=$

$$
=\frac{+9}{a g+e}
$$

$$
\frac{-I}{\arcsin }
$$

we t ake indo accoult onipindios
(6) Now

$$
\begin{aligned}
& =\left\{\begin{array}{l}
3 S F \cdot 2 \vec{S} \\
-\frac{S U}{T} F \overrightarrow{2 S}
\end{array}\right. \\
& \frac{S S}{T}=S S \text { as promisel! }
\end{aligned}
$$

Conclusion:
For surface integrals SS $_{S} F \cdot \overrightarrow{2 S}$
one cans mare the surfaces
provided then $\operatorname{div}\langle F)=0$
bet ween surfaces!!!
R. This will be used in Final Praied!
Problem: Explain Gauss Law P57

